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A new theoretical approach is used to model the transport properties of a 
cation-exchange membrane. By using the Navier-Stokes equation related to the 
Poisson-Boltzmann relation, it is thus possible to determine the solvent velocity 
in a membrane pore, and the influence of electroosmosis on the transport 
properties of the polymer. The variation of the transport coefficients with salt 
concentration in the membrane pore was modeled as for simple electrolytes: 
taking electrophoretic interactions and relaxation effect into account, we used 
MSA analytical expressions. We have investigated membrane conductivity and 
electrophoretic sodium mobility measurements when the membrane was 
equilibrated with NaC1 solution. Good agreement was found between the 
experimental results and our theoretical model. 

KEY WORDS: Ion-exchange membrane; transport properties; electro- 
osmosis; Poisson-Boltzmann equation; MSA theory. 

1. INTRODUCTION 

Ion-exchange membranes play a vital role in a number of electrochemical 
devices and in numerous areas of life sciences, ~1) including batteries, r 
fuel cells, ca) electrochemical sensors and electrochemical reactors. ~5-s) The 
need to predict accurately the membrane transport rates of solute and 
solvent has become more and more important since the last decade. (9-13) 

Moreover, in spite of their importance, scientists do not fully understand 
the behaviour of mobile species within ion-exchange membranes. ~14-26) 
A variety of mathematical models have been elaborated in order to describe 
transport in confined media. Two fundamental approaches are in current 
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usage: the Nernst-Planck flux equations (27"2s) and extensions thereof, and 
the theory of irreversible thermodynamics, t29-3~) The limitation of the first 
approach is the requirement for detailed knowledge about the structure 
and the thermodynamics properties of the membrane, and is only available 
for dilute systems. The second approach consists of a phenomenological 
description of the membrane-solute-solvent system. This method can be 
used to describe the magnitude and coupling between various transport 
processes, but requires an important number of transport parameters like 
friction coefficients, which represent the physical interactions between ions 
and the membrane. 

In this paper, a new theoretical approach is proposed to analyse the 
variation of the membrane conductivity with the external electrolyte 
concentration. This macroscopic parameter is not only dependent on the 
electroosmotic, flow of water in the membrane but also on the cations and 
anions mobilities which are present in the polymer. Therefore we need two 
theoretical models in order to take both of these physical phenomena into 
account. First, we consider the membrane as an array of parallel cylindrical 
pores of constant radius, and with a uniform distribution of ion-exchange 
sites on the pores walls. Then we use the Poisson-Boltzmann equation in 
order to determine the electric potential and ion concentration profiles in 
the radial pore direction. By using the Navier-Stokes equation for the axial 
fluid velocity in the membrane pore, we can thus deduce the electroosmotic 
mobility and its influence on the membrane conductivity. This approach is 
often used in various electrokinetic transport studies t9) but the aim of our 
processes is quite original. 

In the following of this study, we must take the cations and anions 
mobilities in the membrane into account. As for simple electrolytes, t46'47) 
we assume that ions have a mobility when the added salt concentration 
becomes very low. In that case, the membrane pores are only filled with 
solvent and counterions (cations) of mean mobility. We assume that this 
one does not vary with the electrolyte concentration and that the added 
ions are not associated with the fixed charges of the membrane. In order 
to describe the variation of the added ions mobilities with the salt concen- 
tration, we must take the electrophoretic interactions and the ionic atmos- 
phere relaxation into account. These phenomena can be properly solved 
in the framework of the Mean Spherical Approximation (MSA) (48'49) 
introduced in the Fuoss-Onsager transport theory. ~55) 

In this paper, we focused on the study of the transport properties of 
the Nation 117 membrane, manufactured by E. I. du Pont de Nemours & 
Company. This kind of perfluorosulfonic acid cation exchange membrane 
has been used frequently in experimental and transport studies, (1~ 32-43) and 
its microstructure is relatively well understood. According to Gierke, ~44) 
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Nation membrane is described as a series of clusters or inverted micelles, 
interconnected by narrow pores. Physical measurements including x-ray 
diffraction and neutron scattering showed that the cluster diameters vary 
with membrane equivalent weight and range from 30 to 60/l,. 

Cation-exchange membranes in contact with an external electrolyte 
absorb ions and solvent in a manner different from that of neutral mem- 
branes. ~45~ They partially exclude co-ions (anions) by electrostatic repulsion 
because of the presence of ionic fixed-charged groups (S03) in the 
polymer matrix. The overall transport characteristics of the membrane are 
dependent on the cations and anions concentration which are absorbed in 
the polymer matrix, and also on the membrane porosity and the solvent 
content. It is thus necessary to obtain all these experimental parameters in 
order to model the transport properties of the membrane. 

In this work, the transport characteristics of the Nation 117 membrane 
have been first determined with conductivity measurements when the mem- 
brane was equilibrated with NaC1 solution by varying the electrolyte 
concentration and the temperature. We have also determined the electric 
mobility of sodium ion in the membrane with an electrophoresis technique. 
By using the transport theories described above, we can thus model the 
variation of the sodium mobility with the salt concentration in the 
membrane. In the first part of this paper we give an evaluation of the 
electroosmotic contributions as excess properties and take into account the 
departures from ideality (excess properties) as an effect of the coulomb 
forces on the motion of ions and solvent. 

The effect of coulomb forces is calculated in a standard way by a 
Poisson-Boltzmann equation, and the effect of those forces on solvent and 
ion transport is evaluated ~t la Smoluchowski by a Navier-Stokes equation. 

The total ionic mobility is expressed as a sum of an electroosmotic 
term, calculated as indicated above, plus an intrinsic term, containing also 
departures from ideality. For high concentrations in which the screening 
length of the density correlations x-~ is smaller than the diameter of the 
pores, the MSA approximation is a first approximation of non ideality 
even in transport (54), (55). 

2. THEORETICAL SECTION 

2.1. Ionic Distribution in the Membrane 

Nation membranes are generally described as a series of clusters or 
inverted micelles, interconnected by narrow pores. The distribution of 
surface charge density between the clusters and the narrow pores and the 
exact form of these clusters and pores are not well known. In order to 
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describe thermodynamic properties of the ions in the membranes, a spheri- 
cal model of clusters seems to be a good first approach. But for transport 
properties we need of an open subunit to calculate not only the distribution 
of ions in the vicinity of the pore walls but also the solvent and ions 
velocities inside the cavities. Spherical or other closed form of cavities 
would give unrealistic results for the velocities. A cylindrical model of 
pores seems to be the simpler which permits to take into account these 
characteristics. 

Then we consider the membrane as an array of parallel cylindrical 
pores of constant radius a and of length L, with a uniform distribution 
of ion-exchange sites on the pores walls. When there is no added salt in 
the membrane, it contains counterions (m) required for neutralizing the 
charged sites with concentration X, expressed in number of moles per 
unit volume of wet membrane. This quantity is obtained from the ion- 
exchange capacity (IEC) determination and from swelling properties of the 
membrane. 

The fixed cations concentration in the pores is then deduced of X by 
the following relation: 

X 
Cm---- (I) 

In these equations, r is the membrane void porosity (volume of free 
solution within the membrane per unit volume of wet membrane) The 
porosity can be obtained by the following expression: (~~ 

A V  
= ~  (2) 

I + A V  

where A V is the volume increasing of the membrane upon absorption of 
the electrolyte solution per unit of dry membrane volume. This quantity is 
also calculated from membrane water and electrolyte solution content data 
using the following equation: 

AWhpa 
A v = ~  (3) 

Pe 

where Pe is the density of the aqueous electrolyte solution which enters into 
the membrane, P d is the density of dry Nation 117 polymer (1.98 g cm-3), 
A Wh is the ratio of mass increasing of the membrane upon absorption of 
the electrolyte solution to the mass of dry membrane. Using the electro- 
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neutrality condition, the total charge of the membrane pore is then related 
to the number of counterions by the relation: 

Zm = C m x a Z X ~ ,  (4) 
L 

where ,4/'~ is the Avogadro number. The surface charge density cr is also 
given by the relation: 

C,,a~ 
a-----  T -  (5) 

where ~" is the Faraday constant. When the membrane is equilibrated with 
salt solution, the pores are filled with cations ( + ) and anions ( - )  in excess 
of charge Z+ and Z_ respectively. We assume that the system verifies 
electroneutrality with the relation for 1-1 added electrolyte: 

- - T  - -  - -  C + = C L + C .  (6) 

where C~ and C'L are the cations and anions concentrations in the pore. 
The radial distribution of the electric potential ~ in a charged pore is 
determined by using the Poisson-Boltzmann equation expressed in cylin- 
drical symmetry: 

r~rr r ~ r  = ( 4 x  103~zLsdff~,) ~ Z,M, exp(Z,~) (7) 
i 

where ~ = - e ~ / k s T  and Ls is the Bjerrum length defined as 

e 2 

Ls=4moeks T (8) 

where e is the permittivity of the solution in the pore. The dielectric con- 
stant of water in the pore was set equal to 78. The boundary conditions in 
the pore center are O~(O)/Or=O and ~(0 )=0 .  The M~ (mol 1-1) constants 
are related to the average concentrations t2~ and integrated in the total 
volume of the pore: 

- 2Me ~~ 
C~ = - -~  exp( Z i ~ ) r dr (9) 

In most cases, this set of equations can only be resolved numerically. 
Starting from an initial guess of the Mi constants, the integration of the 
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Poisson-Boltzmann equation is obtained by a 4th order Runge-Kutta 
equation, from the initial position r = 0 .  The integrals are computed by 
trapezoidal integration and the M~ constants are estimated using Belloni's 
method. (46~ The accuracy of the computation is tested by comparing the 
quantity d~(a)/dr with the theoretical value determined from Gauss law: 

dfb(a) Z., Ls 
---dT--r = - 2 -~-- --~ (10) 

The radial distribution of cations and anions concentrations in the 
pore is then simply deduced from the potential �9 by the following relation: 

C~(r) = Ci(r=O) exp[Z,~(r)] (11) 

In the special case of no added salt in the membrane pore, the (PB) equa- 
tion can be solved analytically. The solution for the potential is: (17' 18) 

Zl ~(r) = --2 In( 1 -- x2r 2) (12) 

with 

K2 =~LsMI z2 (13) 

and 

M 1 
Cm 

1 + (n/E) (14) 

2.2. Solvent Transport 

In this paragraph we take an adaptation of the classical Smoluchowski's 
method for electroosmosis to porous systems. (~4) The solvent velocity in the 
membrane pore can be deduced from the Navier-Stokes equation: 

rlAvs= Vp-F  (15) 

where r/is the solvent viscosity, Vp is the pressure gradient and ff is the 
body force per unit volume. If the solvent is incompressible V.~ "s vanishes. 
Along the radial axis, we have: 

 P-F =o (16) 
Or 
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which corresponds to electrostriction; and along the longitudinal axis, we 
have: 

ap 
~l A v~ = -~z - Fz  (17) 

A contribution to the solvent velocity, v ~, is due to the movement of 
ions within the membrane pore. So the electric force F~ is dependent on the 
ionic distribution of ions in the membrane: 

Fz = ..W~, x lO3 E MjeZjE,:exp(Zj~) (18) 
J 

where Ez is the electric field. By using the (PB) equation (Eq. 8) and the 
Navier-Stokes equation (Eq. 18), the solvent velocity is expressed as: 

- e E z  
A v ~ = ~  AcP (19) 

4nrlL s 

By integrating along the radial axis and supposing that the solvent 
velocity is equal to zero at the pore wall, we obtain: 

- e E ~  
v ' ( r ) -  [~(z) - ~(r) ]  (20) 

4lolLs 

The profile of the electroosmotic mobility u ~ is then given by the 
relation: 

~ e  
u~(r) - [ q~(a) -- ~(r ) ]  (21) 

4nrlLs 

2.3. M e m b r a n e  C o n d u c t i v i t y  

In order to compute the ionic conductivity in the membrane pore, X~,, 
we must calculate the following quantity: 

XZm = ~" 2 C~ zi~li ( 2 2 )  
i 

where /Ji is the mean mobility of the i ion, related to the mean velocity by 
~i = ~i/Ez, and ~ is the Faraday constant. We define the local velocity vi 
of the i ion by the relation: 

vi = ZiuieE~ + v ~ (23) 
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By taking the (PB) definition of the local concentration Cg(r), and 
assuming as a first approximation that the ionic mobilities ug are constant 
with the position, we have: 

Ci(r) Zivi= ~ MiZiexp(Zi~)[ZiuieEz + v ~ ] 
i i 

(24) 

By integrating on the pore volume, we deduce the mean value of this 
quantity: 

Ig rCi(r) Zivi dr 
~i Ci zi[ Z~u~eE~ + z3 ~] (25) igrd r =E -~ 

" i 

with 

O,= J] v~ exp(Zi~) r dr 
g exp(Zir r dr 

The mean velocity of the i ion is then given by the relation: 

(26) 

Oi = ZieE..ui + ~ (27) 

By using Eq. (23), the membrane pore conductivity can be written as: 

X~=X,+X~ (28) 

where X~ is the ionic conductivity in the pore and g~ is the electroosmotic 
part of the conductivity in the membrane pore, which is defined as: 

X~= ~ ~ C~Z, t3 ~ (29) 
i 

Now, in order to describe the experimental variations of the mem- 
brane conductivity with the electrolyte concentrations we also need a 
theoretical model for the mean mobilities of the ions. We consider that the 
membrane iohic conductivity is dependent on the countefion mobility and 
on the free ions (cations and anions) mobilities within the membrane pore. 
Therefore the conductivity g'~m can be written as" 

z2=Zo+  (30) 
i 

where Zo is the conductivity due to the counterion defined as: 

m 

Xo=Cm~m (31) 
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and 2,. is the ion conductivity of the counterion. The ionic conductivities 
2i are related to the mobilities of the i ions by the relation: 

'~i "= Z i e u i  (32) 

As for simple electrolytes and polyelectrolytes, we assume that ions 
have a conductivity 2 ~ when the added salt concentration in the membrane 
pore becomes very low. In that case, the membrane pores are only filled 
with solvent and counterions of mean mobility 2,.. In fact, most of these 
counterions are close to the pore wall. Then, for hydrodynamic and elec- 
trostatic reasons, the mobility of these counterions must be lower than the 
values known in simple electrolytes. The free ions within the pore must also 
have a lower mobility. 

The strong coulombic interaction between the fixed charges on the 
pore wall and the counterions leads to the "condensation" of some fraction 
of cations in the vicinity of these fixed charges. Therefore we assume that 
the counterion mobility does not vary with the electrolyte concentration 
and that the added ions are not associated with the fixed charges of the 
membrane. 

In order to describe the variation of the ionic conductivities 2i of the 
free ions, we must take the electrophoretic interactions and the ionic 
atmosphere relaxation into account, as for simple electrolytes. We recently 
obtained new extended laws for the variation with concentration of 
transport coefficients of strong and associated electrolytes. (ss) Our work 
was based on modem equilibrium pair distribution functions and the 
Fuoss-Onsager transport theory. For the equilibrium pair distribution 
function we used either the HNC (Hypernetted Chain) approximation or 
the MSA which leads to analytical expressions. The basic equations of the 
relaxation effect are the hydrodynamic continuity equations which relate 
the two particle density fu  with velocity v o. of an ion j in the vicinity of an 
ion i. 

c3t 
= a i o l ( f , j # u )  + 

For homogenous solution of electrolytes the two particle density are 
expressed as product of one-particle densities and pair distribution 
function: 

f0-(Fl, F2)= p,(F~) pj(F2) gu(F~, F2) 

In the linear response theory, the pair distribution functions are then 
expressed as the sum of an equilibrium part (superscripts ~ and a part that 

822/89/1-2-26 
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is proportional to the external perturbation (superscript'). For conductance 
the external force is an electric field. In confined media, this formalism can 
be used to compute the variation of the ionic conductivities in a region 
where p,(71) is slowly varying compared to the range of molecular correla- 
tions. Moreover gij(F~, f'2) will then take the form gu(F~- F2). That is the 
case for a high concentration range of the added salt in the membrane. In 
fact, for a low concentration range, the variations of the ion conductivity 
are not very important. 

The ion conductivity of the i ion can be written as: 

2 ,= 2~ l + u ? j \ l + ~  (33) 

where zlu,/u ~ is related to the electrophoretic correction and zlE/E is 
related to the relaxation effect. The quantity zlu, is determined from the 
relation:t 54) 

zlu,= Z p,eZj (gu(r) - 1) ~E dr (34) 
J 

where pj is the density of the j ion, gij(r) is the pair distribution function 
between the i and j ions, E is the electric field and 7 ~ is the Oseen tensor 
defined as: 

T=  8 - ~  r + r2' 

where ~is the unit tensor. Then Eq. (35) becomes: 

( 3 5 )  

2 
d u , = ~  ~ pjeZj (g~j(r)-  1) r dr (36) 

The above integral is calculated by using the pair distribution func- 
tions from the MSA theory. Then we obtain the following equation: ~5"~ 

zlui k s T  F 
= ( 3 7 )  

u~ 3nrID ~ 1 + Faa 

where D ~ is the diffusion coefficient of the i ion at infinite dilution, which 
is related to the mobility by the Nernst-Einstein relation: 

D ~ k B T  
~ = ~  (38) 
D ~ Zie 
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tra is the mean diameter of the added ions and F is the inverse of the 
correlation length in the MSA theory given by: 

4/'2( 1 +Ftr  a)  2 --- X 2 ( 3 9 )  

with 

R72__ 4zce2 ~ 
ekn T . pjZ2 (40) 

The relaxation effect is determined from the continuity relation of 
Onsager by using the pair distribution functions from MSA theory. So we 
have: 

Z i e D ~ - Z j e D ~  
' rVg  zlhji -- K q kB T( DO -+ ~ ) (41) 

with 

2 o e 2 piZ2D ~ + pjZ: Dj (42) 2 
Xq=eknT  D? + D~ 

In Eq. (42), h~.,. is the correlation function, related to a first-order per- 
turbation of the equilibrium. By using the equilibrium functions at the 
MSA level, the relaxation term is expressed as: t55) 

dE -Xq2e2 IZ, Zj I 1 - exp( - 2XqCra) 
(43) - ~ .  

E 6eksTtra(1 +/"tra) 2 tCq2+21"Xq+21"2[1-exp(-xqtra)] 

Taking into account that t(,qO'a, a s  well as Xaa, and Fo" a a r e  much 
smaller than unity yields the relaxation term at high dilution: 

6E "e 2 [zizj[ ( x 2 2 +60(c3/2))... - x2e2  ]zizj[ 
--E= 3ekBT \Xq.-~-l(, -l('qaa 3ekBT(tcq+X) (44) 

For the electrophoretic term, we use the limit F'-, x / 2 -  xZtra/4, 

~ u ~ k n T k B Tx 
uO - 6nriDO (x - x2a,, + (.0(c3/2)) ~ 6nriDO (45) 

and we recover Onsager's limiting law. 
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2.4. Cation Mobility 

The theoretical model presented above allows to determine the ionic 
mobilities at infinite dilution of the counterion and of the free cations 
and anions within the membrane pore. It is thus possible to model the 
experimental variation of the cation mobility in the membrane which was 
obtained by electrophoresis experiments. When the membrane is equi- 
librated with electrolyte, the experimental sodium mobility is then 
dependent on the mobility u,, and on the mobility of the free cation u+. 
We can thus write the theoretical cation mobility as follows: 

m 

CmU,,,+C~u+ 
+ = (46) 

l" U~h C-m + C + 

3. EXPERIMENTAL SECTION 

3.1. Equilibrium Experiments 

Before any measurement, a pretreatment of the membrane was carried 
out in order to expel impurities. The membranes samples were immersed 
successively in aqueous hydrochloric acid (Prolabo, 35 %) 1 tool 1 -~ for 
24 hours, deionized water for 2 hours and in sodium hydroxide (Prolabo, 
Normadose) 1 moll  -~ for 24 hours in order to exchange proton for 
sodium. This cycle was repeated one more time before boiling the samples 
for 1 hour in deionized water. 

In order to get the equilibrium sodium chloride and water uptake 
by the membrane, we have carried out many experiments including wet 
density, fixed-ion concentration and membrane porosity. Moreover we 
have determined the membrane chloride concentration as a function of 
external salt concentration. 

Dry membranes samples (3 cm x 3 cm) of a thickness of 175/~m, were 
immersed in.the electrolyte solution, e.g., sodium chloride (SDS, analytical 
grade) and equilibrated for 24 hours. Then, the membranes are removed 
from the solution and excess electrolyte was wiped from the membrane 
surface with filter paper. The thickness of the membrane samples was 
measured by means of a micrometer once the sample clamped between two 
thin microscopic slides. The thickness was relatively stable for a given 
sample: it was varying from 200 to 190 gm when the external electrolyte 
concentration was increased. The weight of the membranes samples was 
also measured and the membrane density was determined by dividing the 
wet membrane weight by the wet membrane volume. 
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In order to get the ion exchange capacity (IEC), a membrane sample 
was immersed in a concentrated HC1 solution for 24 h to make sure that 
all of the membrane charged sites were in the acid form. The membrane 
was then soaked in deionized water in order to remove all traces of acid. 
Following this, the sample was placed in a salt solution of interest and 
allowed to equilibrate. The salt solution must be replaced repeatedly until 
no extra H + is detected in the electrolyte rinse solution. The total mole 
number of H + was obtained by titration and the ion exchange capacity 
was calculating by dividing this number by the dry membrane weight. 

The membrane chloride concentrations were found out thanks to a 
technique using radioactive tracers. Membrane samples were equilibrated 
in a NaC1 solution at a given concentration for 24 hours. Then the mem- 
brane was removed from the solution, wiped with filter paper and weighed. 
The sample was then immersed in a NaC1 solution at the same given 
concentration for 24 hours, in which the chloride ion is labelled with a 36C1 
isotope (Amersham International). Afterwards, the membrane was replaced 
in a NaC1 solution at the same given concentration for 24 hours again. 
The activity of this solution was measured with a Minaxi Tri-Carb 4430 
(Packard Instruments) fl counter. 

3.2. Impedance Measurement 

Conductivity measurements were made with a Plexiglass cell devised 
in the laboratory. ~5~ The cell used mercury electrodes. The wet membrane 
sample was clamped between two cell compartments, with an inner 
diameter of 9 mm, by a silicone rubber ring covered with PTFE. Two 
platinum wires were plunged into mercury in order to obtain impedance 
measurements. For both cells, the temperature was kept constant 
(_0.02~ by immersion of the cells into a thermostated oil bath. The 
measurements were performed with a Wayne-Kerr B 6425 impedance 
bridge in the frequency range 20 Hz-300 kHz. The amplitude of the ac 
voltage applied was less than 50 mV to maintain sufficient measurement 
accuracy. For each experiment, the membrane impedance remained stable 
within 1% during the time of the measurements. 

3.3. Electric Mobility Measurement 

Electric mobility of sodium ion in the membrane was performed using 
an electrophoresis technique. In most previous works this longitudinal 
method has been especially devoted to the measurement of the relative 
mobilities of ions (ratio of cation to anion mobilities) on a porous paper, 
assuming that this ratio remained constant in electrolyte solutions. ~51-53) 
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The apparatus used to perform electrophoresis measurements, was a LKB 
2117 Multiphor containing a glass plate thermostated at 5~ This tem- 
perature was necessary to avoid the evaporation of solvent in the mem- 
brane during the experiments. The membrane sample (25 cm x 2 cm) was 
placed on the glass plate and each of the extremities of the sample was 
linked to a strip of paper in order to ensure the flow of current. Each of 
the papers was plunged into a compartment of 100 cm 3 which contained 
the desired electrolyte solution. Each of the compartments was linked 
thanks to a strip of paper to another compartment of 50 c m  3 containing 
the same solution and a platinum electrode. This experimental setting 
allowed the measurements not to be perturbed by the reactions occuring at 
the electrodes. A constant voltage was applied on the electrodes (120 V to 
500 V) and the current crossing the membrane was controlled during the 
experiments. The membrane electric field was determined by measuring the 
voltage on the sample every 4 cm with a voltmeter and it was found to be 
quite constant with a maximum variation of 2 %. 

3. EXPERIMENTAL PROTOCOL 

Samples of pretreated Nation 117 membrane (25 cm x2 cm) were 
immersed for 24 hours in sodium chloride solution. Then the samples were 
wiped with a filter paper and placed on the apparatus support. A drop of 
10 pl of the radioactive tracer 22Na (Amersham International), was put on 
the membrane. The sample was then covered with a strip of Parafilm, but 
the radioactive drops were left exposed. After 3 hours, the strip of Parafilm 
was removed from the membrane and the drops were wiped dry in order 
to avoid a surface conduction during the experiments. A plate of Plexiglass 
was then put on the membrane so as to prevent the solvent evaporation. 
The experiments were performed within one hour, and after this time, the 
membrane was dried at 80~ for 5 min in order to stop the diffusion 
process. The positions of the radioactive deposits were determined by a 
linear analyser r-meter Berthold LB283 coupled with a photomultiplier 
which allows to count fl particles of very low energy. 

4. RESULTS AND DISCUSSION 

4.1. Ionic Distribution and Solvent Transport 

In order to determine the radial profile of the electric potential in the 
membrane pore, we use the experimental concentrations of sodium and 
chlorure ions in the membrane (Table 1). One must remember that ionic 
concentrations in the membrane pores are obtained from water uptake 
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Table 1. Experimental Parameters of the Nafion 118 Membrane as a Function 
of External NaCI Concentration 

i i  i i 

C~ (moll -! ) r C'., (mol l -l) CL (mol 1 -I ) a (/~) 

0.0 0.3 4.256 0.0 20.00 
0.05 0.295 4.385 4.48 1 o- 3 19.81 
0.1 0.29 4.47 0.0127 19.69 
0.5 0.275 4.745 0.145 19.24 
1.0 0.265 4.996 0.459 18.83 
2.0 0.25 5.316 1.217 18.34 
3.0 0.24 5.632 1.909 17.84 

measurements by the membrane. Moreover we can deduce the variation of 
the radius por e with the external NaC1 concentration, which varies from 
0.05 to 3 mol 1-~. In Eq. (4) we denoted zl V as the volume increasing of the 
membrane upon absorption of the electrolyte per unit of dry membrane 
volume. This quantity can be rewritten as: 

d V =  V~ (47) 
vd 

where Vd is the dry membrane volume and Vw is the volume of aqueous 
solution in the membrane pore. This quantity is also related to the pore 
volume as: 

Vw = Np zra2a (48) 

with Np the number  of the pores and e the membrane thickness. When 
there is no added salt in the membrane,  we define V~ as" 

V~ = NpzraZo e o (49) 

which is related to the pore radius ao and to the membrane thickness eo 
without adde~ salt. 

The variation of the radius pore with the external salt concentration 
is then expressed as: 

eo Vw 1 1/2- 
a=ao  e v  o j (50) 

In this paper, we have taken ao equal to 20/~, which corresponds to 
the cluster size in Nation membrane. ~44) We have then resolved numerically 
the (PB) equation by taking all the experimental parameters. In Fig. 1, we 
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Fig. 1. Electric potential profile in a membrane pore at 25~ ( - - ) :  no salt, ( - - - ) :  salt 
concentration C~ equal to 1 mol 1 -~. 

represent the electric potential variation in the pore membrane when it is 
equilibrated either with water or with NaC1 1 mol 1-i. We observe that the 
potential becomes very low in the central region of the pore, when there is 
excess salt in the membrane. In fact, the concentration gradient between 
the pore wall and the central region decreases when the salt concentration 
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Fig. 2. Cation concentration profile in a membrane pore at 25~ (m):  Ce=0.1 mol I -~, 
( - - - ) :  Ce-- 1 mol 1 - l .  
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increases. Then, the ion concentration is more homogeneous within the 
pore, which it can be observed in Fig. 2 and Fig. 3. 

In the cation concentration profile (Fig. 2), we can see a high concen- 
tration gradient which implies a high coulombic attraction of the cations 
near the pore wall. In the relative anion concentration profile (Fig. 3), we 
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Table 2. Simulation of the Electroosmotic Conductivity as a Function of 
Temperature and of Salt Concentration in the Membrane Pore 

c, zs(5oc) xs (10oc) z, (15oc) z, (20oc) z, (25oc) 
(mol l  -1 ) ( 0  - !  cm - !  ) (f2 - !  cm - I  ) (f2 - !  cm - I )  (f2 - !  cm - I  ) (/2 - l  cm - !  ) 

0.0 7.66 10 -3 8.87 10 -3 0.01012 0.01145 0.01282 
0.05 7.90 10 -3 9.14 10 -3 0.01044 0.01180 0.01322 
0.1 8.05 10 -3 9.31 10 -3 0.01063 0.01203 0.01347 
0.5 8.28 10 - 3 9.58 10 - 3 0.01094 0.01238 0.01386 
1.0 8.41 10 -3 9.72 10 -3  0.01111 0.01256 0.01407 
2.0 8.33 10 -3 9.63 10 -3 0.01100 0.01244 0.01394 
3.0 8.43 10 -3 9.75 10 -3  0.01114 0.01260 0.01411 

observe the inverse phenomenon, because of the electrostatic repulsion of 
the anions and the fixed charges sites confined in the pore wall. 

From Eq. (22), we can deduce the electroosmotic mobility profile 
within the membrane pore, which is presented in Fig. 4. In the absence 
of salt inside the membrane, the solvent flow is then only due to the 
counterions mobility. When the membrane is equilibrated with excess salt, 
the velocity profile becomes more homogeneous within the central region 
of the pore, because of the gradient concentration decreasing. 

The electroosmotic conductivity gs can also be deduced from the 
solvent velocity. In Table 2, we present the results obtained at different 
temperatures with all the experimental parameters. We have taken the 

"2, 
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Fig. 5. Variation of the electroosmotic conductivity in a membrane pore at 25~ (11): 
computation by taking the swelling parameters into account, (O) :  computat ion by using 
constant pore radius and surface charge density. 
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variation of the physicochemical constants with temperature into account, 
like the dielectric constant and the viscosity. (56) If we consider the swelling 
properties of the membrane, we observe that the conductivity slightly 
increases with the salt concentration inside the membrane (Fig. 5). The 
opposite effect is observed when we consider that the pore radius and the 
counterions concentration are constant. In fact, it is well known that 
electrokinetic phenomena are less important when the electrolyte concen- 
tration increases in confined media. (57) But for ion-exchange membranes, 
we must take the swelling properties of the polymer into account. 

4.2. Membrane Conductivity 

In all experiments, the impedance diagrams were cutting the real 
axis at high frequencies (100 to 300 Khz), which allowed us to get directly 
the ohmic resistance of the membrane. Thus no impedance analysis was 
necessary to reach the membrane resistance, because of the high membrane 
conductivity and because of the cell geometry. The conductivity is then 
expressed as: 

e 

Z,,,=RS (51) 

where R is the membrane resistance and S the area of the sample. In order 
to get the experimental membrane pore conductivity, we use the following 
relation: 

Xm 
z 2  = - -  (52) 

T 

Then the membrane conductivity is modeled thanks to the theoretical 
determination of the electroosmotic conductivity Xs and to the use of MSA 
transport theory. The fitting parameters are only the diffusion coefficients 
at infinite dilution of the added ions, and the diffusion coefficient of the 
counterion Dm which is defined as: 

RT 
O m ' - ' ~  2 m (53) 

We also write D ~ as: 

RT 
D~ =-ff~- 2 ~ (54) 
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We represent in Fig. 6 the variation of the membrane conductivity as 
a function of the salt concentration and temperature. In the experimental 
curves, we took the simulation of the electroosmotic conductivity X, into 
account. We must however add that the electroosmosis contribution is 
relatively constant with electrolyte concentration, as we could observe it in 
the above section. Therefore, as a first approximation, the real experimen- 
tal values of the membrane conductivity are only corrected with a constant 
value. We notice that the theoretical model obtained from MSA treatment 
is in good agreement with the experimental points. The fitting parameters 
are presented in Table 3 for each temperature. We have taken a mean 
diameter a ,  with a constant value of 3 A, which should correspond to the 
sum of the cristallographic radii of the sodium and chlorure ions, which is 
about 2.8A. t56) This difference may be due to the ions hydratation which 
can also be different in confined media from that observed in electrolyte 
solutions. The' lower curve was calculated using the limiting laws for the 
electrophoretic and relaxation corrections. This is the limit for point ions. 
The comparison with the MSA. treatment clearly exemplify the influence of 
the size of the ions. 

we also notice that the diffusion coefficients are much lower to those 
given in electrolyte solutions, t56) In fact, in confined media, it must exist 
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Fig. 6. Variation of the membrane conductivity by taking the simulation of the water flow 
in the membrane into account, with salt concentration at different temperatures. Comparison 
with MSA treatment. Lower curve: calculation using the limiting laws for the eleetrophoretir 
and relaxation terms. 
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Table 3. Values of the Theoretical Parameters 
in Order to Model the Membrane Conduct iv i ty  in 

the Framework of MSA Theory, w i th  a Mean 
Diameter (r, = 3 A 

T Dm(X 105) D~. + D~ 105) 
(~ (cm2s -t) (cm2s -1) 

5.0 0.09 0.77 
10.0 0.107 0.90 
15.0 0.1271 1.0 
20.0 0.1589 1.108 
25.0 0.1915 1.26 

friction effects between ions which implies lower values of the diffusion 
coefficients at infinite dilution. 

4.3. Sodium Electrophoretic Mobility 

In this work, electrophoretic mobility of sodium ion is determined by 
measuring the shifting of the radioactive tracer on Nation 117 membrane 
sample under the action of an electric field. The electric migration in the 
membrane is then related to the ionic mobility ui of the ion i which is in 
fact the velocity acquired per unit of applied electric field: 

o, (55) 
U i "-" -- ~ 

where E is the modulus of the applied electric field in the membrane. 
During a migration time t, the ionic species will have covered the apparent 
distance di defined as: 

di= uiEt (56) 

From Eq. (45), we can model the variation of the electrophoretic 
mobility of sodium ion in the membrane, as a function of salt concentra- 
tion. The experimental values of the sodium mobility were obtained at 5~ 
First, when there is no added salt in the membrane, the sodium ion has a 
mobility Um which corresponds to the counterion mobility. By using the 
results obtained in the above section, we deduced a diffusion coefficient Dm 
of the counterion, which is directly related to the electric mobility Urn. 
However, this value was obtained by taking the solvent velocity into 
account. Then, to be in agreement with our model, all the experimental 
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Fig. 7. Variation of the electrophoretic sodium mobility at 5~ with salt concentration. 
Comparison with MSA treatment by taking the water flow simulation into account. 

values of the sodium mobility were taken away from a constant value, 
which in fact corresponds to the electroosmotic mobility at infinite dilution. 
We can notice that this mobility is related to the electroosmotic conduc- 
tivity g~ by the relation: 

Z ~ = FC',,,~ ~ (57) 

Then, in order to model the experimental variation of the sodium 
mobility in the membrane, we used the following fitting parameters: a 
counterion mobility u,, equal to 3.7510 -5 cm2V -~ s -~, and a free cation 

o equal to 1.5910-4 cm 2 V -  1 s -- 1 which mobility at infinite dilution u+ 
corresponds to the half sum (D~_ + D ~  at 5~ (see Table 3). We represent 
in Fig. 7 the comparison between the experimental and the theoretical 
variation of the sodium mobility in the membrane, as a function of the salt 
concentration within the pore. The theoretical curve fits well over the 
experimental ~oints by taking the experimental errors into account. 

5. CONCLUSION 

Experimental measurements of membrane conductivity and electro- 
phoretic cation mobility can be related in order to understand the trans- 
port properties of ions in a ion-exchange membrane. Therefore, by using an 
equilibrium theory relatively simple like MSA, which is often used for elec- 
trolyte or polyelectrolyte solutions, we can also model the variation of the 
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transport coefficients in confined media. In this paper, we have chosen 
to take electrokinetic phenomena into account: by using the Poisson- 
Boltzmann equation, related to the Navier-Stokes equation, it is thus 
possible to simulate the solvent velocity within a membrane pore. More 
sophisticated density functional theory than Poisson-Boltzmann could be 
related to the Navier-Stokes equation. Moreover a better description of the 
one-particle and two-particle densities could be deduced. We hope to 
discuss this point in the future. In fact, it would be interesting to make 
experimental measurements of electroosmosis in order to compare directly 
the obtained results with out theoretical approach. Then, several para- 
meters should be taken into account: the radius pore, the viscosity and the 
dielectric constant of the solvent or the pore geometry. For the physical 
properties of the solvent should be modified in confined media. 
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